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ABSTRACT

By considering the complex of one-point, turbulent moment equations for velocity, pressure and tem-
perature, it appears possible to predict some properties of diabatic, density-stratified planetary layers using
empirical information obtained from laboratory turbulence data in the absence of density stratification.
In this paper attention is focused on the near-surface, constant-flux layer. The results, like the empirical
input, are simple and, hopefully, will be instructive and useful in the formulation of improved and possibly

more complicated models in the future.

1. Introduction

Prediction of the behavior of two-dimensional tur-
bulent boundary layers normally associated with engi-
neering is now well in hand. One approach is to utilize
the more-or-less conventional eddy viscosity or mixing
length hypothesis which, however, must be extended
beyond Prandtl’s specific rule, I « 2, to include the outer
portion of the boundary layer. The author and others
have evolved such schemes which when combined with
numerical computation have considerable predictive
power; i.e., boundary layer flows with pressure gradi-
ents, heat transfer, mass transpiration, large Mach
number, etc., may be predicted with no empirical ad-
justment. The constants that do enter such models—
which are called Mean Velocity Field closure models
(MVF)—are determined once and for all from flat
plate turbulent layers with zero pressure gradient, heat
transfer, mass transpiration, Mach number, etc.

MVTF models, however, do not have the capability
of predicting the effects of stratification in a gravity
field or other body-force like effects without extensive
empirical modification. However, there does exist hope
for so-called Mean Turbulent Field (MTF) closure
models which include two subset models, the Mean
Turbulent Energy (MTE) model and the Mean
Reynolds Stress model (MRS). For neutral layers,
MTE models involve the solution of the turbulent
kinetic energy equation in addition to the equations for
the horizontal velocity components. MRS models call
for the solution of equations for all components of the
Reynolds stress tensor. For stratified flow, additional
equations for the heat flux vector components are in-
cluded. Clearly, MRS models present a formidable
computational task. Nevertheless, research to deter-
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mine their ability to predict real data seems worthwhile
after which analytical simplifications might be found.

Although some of the individual closure assumptions
of MTF models are still very much on trial, the basic
framework is not new. This author has recently con-
tributed to a review article (Mellor and Herring, 1973)
covering in some detail much of the past and recent
history of MTF models as applied to neutral boundary
layers and this will not be repeated. Here we note only
that MTF models go back to Prandtl and Wieghardt
(1945) and Kolmogoroff (1942). However, the key
hypothesis of Rotta (1951) marked the beginning of
a rational, but still empirical, approach to MTF
modeling.

Derivations of the so-called KEYPS equation gen-
erally involve the turbulent energy equation together
with quite a few assumptions. In an attempt to under-
stand the effects of stratification, Monin (1965) has
investigated the full Reynolds stress equations and
discussed certain modeling assumptions. No calculations
or comparisons with data were, however, forthcoming.
Recently, Donaldson and Rosenbaum (1968) have
proposed some closure hypotheses and performed calcu-
lations using a one-dimensional, unsteady MRS model
to simulate clear air turbulence. However, there were
no quantitative data available for comparison.

In the present paper we also propose MRS closure
relations which are derived under the constraining as-
sumption that the constitutive coefficients involved in
each relation are isotropic. Note that the Reynolds
stress tensor itself is not isotropic, a fact which is
important in describing stratified flow. The closure as-
sumptions involve empirical information related directly
to well-defined turbulence structure parameters and
obtained from laboratory measurements of neutral
turbulent flows.
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The equations are presented in considerable gen-
erality so that, in principle, they can be integrated to
simulate, for example, a complete planetary boundary
layer. Here, however, we restrict attention to the
constant-flux surface, region, thus avoiding—for the
time—the considerable computational effort required
for the complete layer. However, this is a logical first
step since it is possible to compare directly with the
constant-flux data of Businger ef al. (1971) in the form
of Monin-Obukhoff similarity variables.

2. The basic equations

The equations of motion for the mean velocity U;
and mean potential temperature ® are
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where P is the mean kinematic pressure, g;= (0,0, —g)
the gravity vector, f;=(0,f,,f) the Coriolis parameter
(the vertical component f will not be subscripted),
B=—(8p/0T),/p the coeflicient of thermal expansion,
v the kinematic viscosity, and a the kinematic heat
conductivity (or thermal diffusivity). The overbars
represent ensemble averages and the lower case terms,
ui and 6, are the fluctuating components of the velocity
and temperature and are governed by
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Since the mean equations (1), (2) and (3) involve the
Reynolds stress and heat conduction moments, uu;,
u:0, we obtain their governing equations from (5) and
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Eq. (8) involves &, an equation for which is obtained
from (6) so that
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3. Modeling assumptions

The primary contribution of Rotta (1951) was to sug-

gest an assumption for the term, p(du;/dx;+ du;/ %),
which he called the “energy redistribution term” since
one of its functions is to partition energy among the
three energy components while not contributing to the
total. [Upon contraction, the term drops out of Eq. (7)].
Based on integral relations obtained from Eq. (5)—in
the neutral case where g;30 is negligible—Rotta sug-
gested that the term might be reasonably made pro-
portional to #u; and U,/ dx;. Thus,

o . au,
P<_+_~>= Cijemtithmn~+C iirm—.
dx; 9x; . 0% m
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Here we assume that the constitutive coefficients are
isotropic tensors; that is,

Cijpm= C18;;8km=tCo8itd jm C10 jibim.

From continuity we obtain Ci= (Cy4C3)/3; similar
reasoning applies to C’;jxm. We therefore obtain
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X 9x;

where —g/(3l1) and C¢? have been substituted for the

surviving scalar coefficients and g= (u;?)%. The length [

and the constant C must be determined empirically.
Proceeding in similar fashion, we obtain

ag

q ——
= ——u. (11)
336,' 312

There is no term proportional to 3U/dx. since this
would involve a constitutive coefficient proportional
to e;jzm which is ruled out by coordinate reflection.?

An assumption for the dissipation in the present
framework is

= 5y (12)
3xk axk

and therefore follows Kolmogorofi’s (1941) hypothesis
of local, small-scale isotropy.
Since there is no isotropic first-order tensor

ou; 06
(a+v)— —=0. (13)
6% axk
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The diffusional terms are an enigma which is offset,
somewhat, by the fact that in neutral layers at least
they are not overly important terms. Following our
procedure there are three possible forms for wguu;
(if we let it be proportional to duysn/dx, through a

2 For example, reinstate a term proportional t0 €rmdUr/dxm
in (11) and carry it through the succeeding analysis. In the con-
stant flux layer the term would yield a heat flux in the cross-stream
direction. We now note that if the term g;38 is retained in Eq. (5)
one finds that terms proportional to 8(g:;u;#-+g;u.6 — 28;;g:u48) and
£iB86% should be added to (10) and (11) respectively. For the pres-
ent, these are neglected since it is our plan to utilize closure as-
sumptions and empirical constants from neutral flows only.
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six-order isotropic tensor and specify symmetry in
k, 1, 7). Here we choose
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UpUU;= —(])\1 8 1
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For u;u,0, two forms are possible. We choose
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Tt is questionable whether the pressure diffusional terms
can be discriminated experimentally. Hanjalic and
Launder (1972) assert they are small in the first place.
Therefore, for the present we set

pui=p=0 (18)

to complete the required modeling assumptions.
If (10)~(18) are inserted into (7)~(9) and
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4. The boundary layer approximation

If now we discuss a boundary layer where the
vertical scale height is much less than the horizontal
scale, Egs. (1)-(2) and (19)-(21) may be written as
follows:

OU v w
—F—=0 (22)
ax dy 9z
DU p 97 _—_ AU
————-fV—i———=—(—uw+u———> (23a)
Dt dx Jz 9z
DV d/ __ oV
—tfU4—= *(——vw v———> (23b)
dy 0z 0z
op
—=—4B30, (23¢)
9z
DO 8,7 __ 096
——=~<—wa+a—> (24)
Dt 9z Jz
Du? O 0wt u
+2fjuw 2fuv——[q>\1——+v——:'
Dt ) 0z 0z
80U — ¢ 2 ¢
—Qwu——-i(u?——)——g— (25a)
dz 3 3/ 34
Dy? 9 92
— 2 fur= ——[ghl——+v—~]
Dt 0z a a
2
——2wv————< ——q—>-—~—q— (25b)
0z 311 3 3 Al
Duw? d
—2fyuw~— —[3q>\1———+v——
Dt a 93
q
+23gw6—~—-(w2 >—~—— (25¢)
3/ 3A
Duv ouv  duv
——+fyuw+f(u2—v2)——[qh-+v~—]
5} 0z
9V U ¢q_
—wu——wr———uv  (25d)
dz az 3[1
Duw 3 duw  duw
—tfy (w2~u2) f'uw [Zq)\l +v :I
Dt Iz dz dz
— aU —_— g
—(w?—Cg)—+Bguf——uw (25¢)
0z 3L

ATMOSPHERIC SCIENCES

VoLuME 30

Dow — duw  dvw
—— fyuv+ fuw~ ~—[2qk1 +u——:] :
Dt li/4 dz

— v g _
—(w?~Cg?)—4pgvd——vw (25f)
9z 3l

1

Duf
——+ fyw() f'u0

i oud 30 ou
l:qu——~+au——+v0—:|
a

9z dz
—80 _9U q__
—yw——fw————ud (26a)
0z dz 3l
Db _ o o 90 ov
—F fub= —Ijqkz——{-a?)-——fﬂ/ﬁ-—:]
Dt IS} 0z dz a9z
00 _9dV gq_
—yw——f———16  (26h)
0z 92 312
Dub

3 owh 98 ow
—— fyuf= ‘[2qk2——~+aw—+yﬂ—]
Dt a9z 0z 0z 9z

00 __ g
—wl—4Bgf2——wd (26c)
4 9z 3l2
Dz 9 96?2 962 00
———————[q)\s———+a———] Y25, @7)
Dt 9z a9z 9% 0z A

5. The constant-flux layer

Outside of the viscous (or “roughness’) sublayer but
still close to a solid surface, it may be deduced from
(23a, b) and (24) that ww, vw, wg are approximately
constant and equal to the total “wall’” shear stress and
heat flux. Without loss of generality, we can orient our
coordinate system so that vw=0.

We seek further simplifications. From a simple scale
analysis it may be determined that the advective terms
and the Coriolis terms in (25) and (26) cannot be
significant in the constant-flux layer’ and this should
apply to atmospheric or sea surface boundary layers.

In neutral layers, it may be shown (e.g., Mellor,
7, wh and §2 are also constant and,that the dlffusmnal
terms are therefore zero. For stable or unstable layers,
however, we will see that %2, etc., vary with z so that,
strictly speaking, the diffusional terms should not be

3If the Coriolis terms are left in (25) and (26) the parameter
which \ivould appear in Eq. (41) is fz/u. which may be shown to
be small
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neglected in a stably or unstably stratified layer. On
the other hand, we note that outside the constant flux
layer in neutral layers, where the diffusion terms are
not zero in principle, they are nevertheless fairly small.

Energy budget measurements as reported by Wyn-
gaard and Coté (1971) present a confusing picture.
First, estimates of non-stationary advection and Coriolis
terms are small in accordance with our own estimates.
Furthermore, direct measurement of kinetic energy
production (shear plus buoyancy production) and dis-
sipation indicates a near balance over the entire
measurement range of stable and unstable conditions.
However, direct measurement of the velocity diffusion
term indicates it to be significant for unstable condi-
tions. Since production and dissipation balance, the
velocity diffusion measurement is either in error (it is,
after all, a triple correlation which must be differen-
tiated) or it must be balanced by pressure-velocity
diffusion which in (18) was neglected here.

Despite the confused experimental situation we will
proceed here by neglecting the combined velocity and
pressure diffusion term. We also neglect the diffu-
sion of §2, which Wyngaard and Coté reported as small
in all cases. It may now be shown that 9V /dz, uv,
v9=0. Therefore, (25a—f), (26a~c) and (27) reduce to:

—oU ¢ @\ 2¢
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dz 3l 3 3 A
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a. Neulral case

First, we consider the case where g=0 [which is
equivalent to letting { — 0 in Eqs. (41a-g)]. Let

—uw=1u,? (31a)
2 9, wi=u (W e 2w (31b, ¢, d)
el s s R (31e)
—bw=H (31f)
kz 0U
pu=—-— (32a)
U, 02
k21, 00
o= e (32b)
H 93

With fairly weak assumptions (Millikan, 1939; Yajnik,
1970; Mellor, 1972) about the nature of turbulent
boundary layers, it may be shown that ¢ (2)= constant
from which follows the logarithmic law of the wall.
Furthermore, the von Kérmén constant « is chosen
empirically so that ¢x=1. It follows from (28) and
(29) that ly, lp,A1, Az 3 so that

51= KA 12, A1= xBlz, (338., b)
lo=xd 2%, Ao=kBsz. (330, d)

Therefore A1, As, Bi, Bs, C are empirically required
constants which are not completely independent as
will be seen below. If we define
1 2A1 (
y=3—2— 34
3 31) )

Egs. (28a,b,c,e) may be written, after some algebra, as

1= (1~2)¢?, (352)
V=g, (35b)
wi= g2, (35¢)

— | [U=3@=0)
—yw=y = l: . :I g2, (35d)

which we have written dimensionally to emphasize
that the full Reynolds Stress tensor depends on #., v
and C. In the course of the above analysis one finds
that B;=¢** so that (35d) may be written

2 ¥ 1-=-3y
Bl=[_~—:| ) A1=Bl s
(1=3y)(—C) 6

where we have also solved for 4., using (34).

(36a, b)
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We now appeal to some laboratory measurements
in the constant-flux region of a two-dimensional, wind-
tunnel boundary layer. The measurements of Klebanoff
(1955) give '

B, ww, w 0.57, —0.16, 0
wu, w? wv|qgi~|—0.16, 015, 0 |,
w, W, 0o, 0, 028

where some judgment is required to estimate the values
appropriate to the constant-flux region. Some recent
measurement by So and Mellor (1972) and by
Champagne et al. (1970) yield

0.53, —0.16, 0 0.48, —0.17, 0
—0.16, 020, 0 | and |—0.17, 024, 0
0, 0, 027 0, 0, 028

respectively. The latter case is not a boundary layer
but a grid-generated, near-homogeneous, constant
shear flow downstream of the grid where uu,/¢* has
approached the above constant values. It turns out
that Eqgs. (34) and (35a, b, ¢, d) apply equally well to
this flow where, however, z in (32a) and (33a, b) must
be redefined as a characteristic dimension of the flow
which is invariant in the cross-flow direction.

We now see that (35b, c) permits only equal values
of 72 and w2, whereas the data indicated more or less
unequal values. Possibly, this is a defect in the isotropy
assumption involved in (10), but, hopefully not a
serious impediment to our ultimate goal. Taking an
average we then obtain y=~0.23. Using an average
value of uw/¢* in (35d), we find that C=0.056. From
(36a, b) we obtain 4,20.78 and B;=~15.0.

A quantity of interest is the ratio of the velocity and
temperature dissipation terms. From (12), (14), (33b)
and (33d) we obtain

du\? 30\ ¢ B,
b( )//m<__)=:fﬁ
axk axk 62 B 1
For high-Reynolds-number, decaying turbulent fields,
similarity considerations yield (Hinze, 1959) By/B1=3%
which agrees apparently with the measurements of
Gibson and Schwartz (1965) ; however, this was deduced
from a rather short decay history. The boundary layer
measurements of Johnson (1959) give the result
Bs/B120.36. Thus there exists considerable uncertainty
in By, ie., 5.5<By<10.0.
Finally, a quantity of interest that may be extracted
from (28e¢) and (29¢) is the turbulent Prandtl number

00 A;vy—C
Pri= —uw—-

U
(-
0z 0z Ay, v
Tt is fairly well established experimentally that 0.7 <Pr,

<<0.85. For the neutral condition of the data to be dis-
cussed below it was found that Pr,=0.74. Therefore,
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using this value and y=0.23, C=0.056, we obtain
A,=0.79.

b. Stratified boundary layers

At this point we make the seemingly naive assump-
tion that (33a, b, c, d) and the constants 41, 42, By, B,
C obtained for neutral layers apply equally to stable and
unstable layers. To cast the complete equations in non-
dimensional form we now define a Monin-Obukhoff
length scale

L= . (39)
kgBH
and
z
g‘ EE: (403')
— U0
gri= 7o (40b)
ub
W= = (40c)

Thus, (28a, b, ¢, e), (29a, ¢) and (30) may be Wwritten

q* a q*Z 2 q*3
“ewt(F om0, )

3A1 3 3 Bl

ko, ke 9 %3
__q__<v*z_2_>+_ 1 _ 0, (41b)

34, 3 3 By

¢ /g 2 g%
2§‘+———<w*2-———->+— =0, (419

A, 3/ 3B

- o £ 3
W**—Cq*®) oy —{u*0* ———=0, (41d)

1

7 —
—ou— out+—u*6*=0, (41e)

2

. k
w2 — 02 ———=0, (41f)

3/12

j—
—2ent24%=0. (1)

For some advantage in solving the equations, (41la-g)
can be reduced to : :

q**=Bi(en—),
—_ B,

0*2=“;<P11;

q

(42a)

(42b)
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euly—C—(64¢+34:8)/¢*]— ol 34:20/¢%%]
=1/(3419"),
only—(6A5+Bo$)/q* ]=1/(34.:0%).

The solutions to these equations are shown in Figs. 1
and 2 in comparison with the data of Businger et al.
(1971) for 4,=0.78, B;=15.0, 4,=0.79, C=0.056.
Since there exists uncertainty, B, had to be chosen so
that calculated values did fit the ¢4 data on the stable
side; nevertheless, the chosen value, B,=38.0, lies in
the range 5.5< B2<10.0 estimated from neutral data.
By absorbing it into the definitions of¢ 4, ¢x and §,
we are not required to choose a value of k. However, the
value of x=0.35 was chosen by Businger ¢! al., so that
the experimental ¢y=1 at the neutral point, {=0.
This differs somewhat from the more commonly
accepted value, k=0.40.

In the process of obtaining the ¢, ¢n solution,
other interesting quantities are obtained including the
turbulent energy components shown in Fig. 3. Note the
relative decrease in the vertical component of the
turbulent energy as stability increases.

Egs. (42a,b, ¢, d) may be examined for their asymp-
totic behavior. Without going into detail and using

(42c)
(42d)

bu
¢u
7-..
14
|
ed s
o
o ®
> 08
0.6 5
0.4
0.2 4
I 1 L
040 -005 O 005 040
4 o
i
o] }
UNSTABLE { STABLE
|
R
T T T T L U ] ’
-25 -20 -15 -0 -05 0 05 1O 15 20

Fic. 1. Comparison of the velocity profile data of Businger
et al. (1971) with calculated values (solid curve). Insert is detail
near ¢{=0.

4 Varying B, affects the calculated ¢y only on the stable side
and does not affect ¢ significantly. A variation, 8B2/By= =%},
produces a variation, §¢r/ ¢r= 0.3, on the stable side.
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o L%

.°>&‘
? L\l

0.2 54

-0.10 005 (E 005 0.lo

2_.
UNSTABLE
1
._.,..._..-_.../J“ l
T T T T T t T T T
-25 -20-15 -1.0 -05 O 05 10 15 20

1o

¥1c. 2. Comparison of the temperature profile data of Businger
et al. (1971) with calculated values (solid curve). Insert is detail
near {=0.

30

F16. 3. Variation of calculated components of the turbulent energy.
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o1 ] I by~ |C l-l/l

— ¢“~ |c I-I/l
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%oz 04 06 08 1O 20 40
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Fi6. 4. Temperature gradient data under unstable conditions
(from Businger ef al., 1971).

the aforementioned values of A1, By, As, By and C, it
may be determined that

ou~ 4.68{} (43a)
{~>o,
or~4.70¢ (43b)
or=0.239(— ;)—*} (44a)
{——o0,
er=~0.164(—¢)? (44b)

The later result has been obtained by a number of re-
searchers including Prandtl (1932) and may be deduced
from the requirement that, as { — — 0, %, should no
longer be a factor in the determination of heat flux.

As discussed by Businger et al., the data shown in
Fig. 4 indicates o= (—{)? in the range 0<—{<2.
However, this i3 consistent with our calculated result
which, although a bit low, agrees well with the §-power
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law only after — > 3. Other data assembled by Businger
(1972) for much larger values of —¢ are shown in
Fig. 5. The data and the calculated values agree quite
well and the asymptotic 4-power law seems secure.

Another interesting way of presenting results is in
the form

—UwW 1
—=, (44a)
<8 U>2 ot
2z —
dz
—wh 1
= ) (44b)
IR
2o — Y ——
9z dz
W, 0% Wt u* %R
= , (44c¢)
<3U 2 om?
K2z2 _~_>
dz
as a function of Richardson number
9@
Bg—
9z (on
Ri= =— (43)

The compufed quantities are plotted in Fig. 4. We
obtain a critical value Ri=0.21 beyond which the flow

0
5;\,.
A e N

i * KANSAS 1968
i o UTAH 1970

A H . i |

0.l —
-100 -50 -20 ~-10 -5 -2 -l

Fi6. 5. Vertical velocity and temperature variance from data assembled by Businger (1972).
The Kansas data for (w*2)} are from Haugen ef al. (1971) and for (§*?)? from Wyngaard et ol.

(1971).
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50 » —2.5

I'16. 6. Momentum and heat flux as a function of Richardson
number, Note change of scale for the left and right curves.

is laminar. This limiting value is also obtained from
(43a, b).

6. Discussion

A planetary boundary layer model is proposed which
is here applied to the constant-flux layer. Empirical
information used in the mode! is solely derived from
neutral turbulent flows so that the intrinsic prediction
power of the model may be judged.

From the experimental data explicitly considered in
this paper the basic model using the simple empiricism
in (33a, b, ¢, d) appears to be quite good. However, from
the spectral data of Kaimal et al. (1972) it would appear
that 2%/u.? and v3/x,% do not increase on the stable side
as indicated in Fig. 3.5

If this be the case, future investigations must deal
with alterations of (10), (11), (12), (13) and (14),
or the specific empirical input in the form of Egs.
(33a, b, ¢, d). With regard to the latter, various formula-
tions for a length scale have been proposed (and sum-
marized by Mellor and Herring, 1973) and might sup-
plement (33a,b,c,d), in a way which—hopefully—
would not require explicit empirical adjustment for
stratification. On the other hand, it is clear that the
present model compares favorably with a considerable
amount of data.

¢ The author is indebted to a reviewer for pointing this out.
It should be noted, however, that integral values of the spectral
data, rescaled to yield «2/u,? and v3/u.2, do not seem to be directly
available in the literature.
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